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UNCERTAINTIES IN DERIVED TEMPERATURE-HEIGHT PROFILES
R. A. Minzner

Atmospheric and Hydrospheric Application Division

ABSTRACT
Nomographs have been developed for relating uncertainty in temperature T (or
in the corresponding scale height H) to uncertainty in the observed height profiles
of both pressure p and density p. The relative uncertainty 8T/T is seen to de-
pend not only upon the relative uncertainties §p/p or 8p/p, and to a small extent
upon the value of T or H, but primarily upon the sampling-height increment Ah,
the height increment between successive observations of p or p. For a fixed
value of 8p/p, the value of §T/T varies inverselywith Ah. For Ah =4/2 -H, which
is of the order of 10km, 8T/T = 8p/p. For Ah=0.01km, 8§T/T is about 1000
dp/p, while for Ah = 35km, 8T/T is about 0.3 8p/p. Inthe case of T derived
from density-height data, this inverse relationship between 5T/T and Ah applies
only for large values of Ah, i.e., for Ah > 35km. For Ah < 1km, §T/T >~ 8p/p,
independent of the size of Ah. No limit exists 1n the fineness of usable height
resolution of T which may be derived from densities, while a fine height resolu-
tion in pressure-height data leads to temperatures with unacceptably large

uncertainties.
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SYMBOLS

Basic Quantities and Coefficients

A

The dimensibnless coefficient indicating the factor by
which (Sp/p) is amplified to yield (8T/T)

The standard geopotential gravitational constant

9. 80665 m?sec (m')"!

Scale height in units of geopotential height, m’ (or km')
Geopotential height in units of m' (nearly equa\1 to geo-
metricheight, but accounting for height variation of the
acceleration of gravity: i.e., Gdh = g(z)dz

A dimensional constant 0., 0341632 K/ m’ resulting from
the combining of the three constants GM/R into a single
value

mean molecular weight of air 28, 9644 kg kmol™!

atmospheric pressure Nm™>

Universal gas constant 8, 31432 x 10? joules K™ kmol ™’
The value of a particular series of terms invelving
density ratios

Atmospheric Temperature K

A general designation for a function of a number of

generalized variables
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Figure
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Equatich or

_ Basic Quantities and Coefficients (Cont'd.) Figufe
v A general deéignation for the set of variables of which
xisa functioﬁ ‘ (14
o A subscripted dimensionless coefficient with a value
near unity (23)
p atmospheric density kg m™3 ' ()

Single Subscripts

1 Refers to a particular height h, so that p,, Ty, Py,

and h; all refer to the same point in a given equation ), (11
2 Similar to 1 ‘ 4
i Refers to aﬁ individual member of a set of re~

lated variables having the general designation y; (14)
i Also refers to a variable in an isothermal atmosphere

ag p; in the é;raph of (o; /p,} versus h in Figure 1
j A general designation for an integer which may vary be-

tween 2 and ¢, and which is simultaneously associated with

a geOpotenti:a'tl height as-hj and with the related density as p; 21)
q A general designation for an integer which may have any

positive value and which is associated with the lowest

density—height data point(i.e., hq, o q) involved in a parti-

cular evalua;:ion of an integral to determine the value of the

related temperature T, . {(11)
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Equation or

Single Subscripts (Cont'd.) Figure
q Also used as S q where q implies the number of terms
in the series S (30}
by Designates a specific reference value for the basic
quantity of which it is a subscript, i.e., P, and o, Figure 1

Double Subscripts
1,2 Refers to a particular height 1ayer as between h, and h] . Y]
where h, and h, are ordered in such a way that the

guantities within the subscripted parentheses have par-

ticular signed significance, i,e., Ah is always positive

while AH is positive only when dT/dh is positive in the {10a), (23)
related layer and (24)
j~1,j  Similar to 1,2 | (25)
iy i+l Similar to 1,2 (26)
gq-1,4 Similar t0 1,2 (27

g, max desgignating maximum value of Sq, as in Figure 6.
q,min designating minimum value of Sq, ag in Figure 6, (36)
Operators and Functions

Overbar as in T or H indicates the mean value of T or H

for the related layer (4)
v Square root as VZ (20}
i Integral as [p(h)dh (11)



Operators and Functions (Cont'd.)

9

d

£n

Partial differential as in 9x

Differential as in dh

Natural logarithm as fnp and ¢np

An increment as in Ah and AH

An increment or random uncertainty as indy;, ép,,
84Ah, 8T, rSpJ-, 5Tg, and Sp,

A summation of a set of terms

Equatién or
Figure

(14)
(1)

(1) and (7)
(4) and (10a)
(14), (15)
and (21)

(12), (14)



AN ANALYSIS OF THE ERRORS ASSOCIATED WITH
THE DETERMINATION OF ATMOSPHERIC TEMPERATURE

FROM ATMOSPHERIC PRESSURE AND DENSITY DATA

I. INTRODUCTION

Relationships between pressure, temperature, and height in the earth's atmos-~
phere are well known, and for many years have been the basis for height deter-
mination in balloon-radiosonde flights making observations of pressure and tem-
perature in meteoroclogical probings of the lowest 30 kilometers of the earth's
atmosphere. When radar-tracked rocket vehicles extended the potential atmos-
pheric probing capabilities to heights up to 100 kilometers, into regions where
pressure is still measurable, but where existing technology does not allow for
immersion sensing of temperature, these same mathematical relationships
were used to extract temperature from the measured pressures and radar-derived
rocket-height data, The unsmoothed temperature-height values from many of
these soundings represented a very jagged height profile, with the degree of jag-
gedness apparently increasing as the height inerement hetween successive data
points decreasea. Investigators usually have been unable to determine how much
of this jaggedness represents real temperature variability, and how much is

attributable to measurement error,

The hydrostatic equation and the equation of state lead to another set of

height relationships: those between atmospheric density, temperature,



and height, such that temperature may also be computed from density-
height data, fn cases where such coxﬁputations have been made, partic-
ularly in the height region of 30 to 100 km, the resulting temperature-height pro-
files appeared to be less jagged than those derived from pressure-height data

with comparable height resolution.

The apparent difference in the jaggedness of deﬁsity-derived témperature-height
profiles from those associated with pressure-height data suggest that the height
increments of the pressure and density data do affect the uncertainty in the de-
rived temperattires, and that the influence of height increments in relation to
density data may be different from that in relation to pressure' data, Obviously,
the error analyses presenfed in this paper, involving both the pressure-
temperature-height relationship, and the density-temperature-height relation-
ship, are needed. The error analyses confirm the fact that important differénces
do exist between these two sets of relationships, particularly in regard to the in-
fluence of the height increment on the propagation of measurement uncertainties
into the temperafure—height profile. These differences strongly favor the use of

density~height data over pressure-height data.



II. FUNDAMENTAL CONSIDERATIONS

A. Pressure-Height Relationships

The equation of state, when combined with the differential form of the hydrostatic
equation to eliminate density p, yields an expression frequently referred to as the

hypsometric equation:

R | (1

where p is atmospheric pressure,
h is a measure of the height above sea level, in geopotential meters m’
T is absolute temperature of the atmosphere at h,
R is the universal gas constant, |
M is the mean molecular weight of air,
G is a constant when h is expressed in geopotential, and .

H is the scale height in geopotential units,

Solving equation (1) for T and H, respectively, yields

GM -dh

T= R 'dan 2
and
. RT -dh
H= 0= 3)
GM  dfnp

When values of Znp versus h are known from numerical data rather than from an
analytical function, it is convenient to replace the expression ~dh/d®np, which

applies to a specific height, with a numerical approximation (b,~hy)/{fnp,-tnp,).
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In this approximation, p, is the pressure at h, and p, is the pressure at hz" The
approximation therefore represents the mean value of the. reciprocal of the deriv-
ative over the height interval (h,-h,). When the point value of the derivative is
replaced by the numerical approximation, in both equations (2) and (3), the related
values of T and H no longer apply to a single height, but rather become the mean
values T and ﬁ_, respectively, associated wif:}}- the height interval (h,-h, ). Thus,

we have

GM h,-h (Ah)
= . 21 g 12 4)
R fnp, -4np, {np, - fnp,

where k = GM/R = .034163 °K/m’, and (Ah), , =h, -h;, and where, from the
relationship between T and H implicity in equation (1}, we see that

h, -y - (8h),

= &)
Rnp, - an2 anl - an2

From equation (5), we obtain the following expression which will be of special

importance in the uncertainty analysis in Section III:

1 H
— = |— (6)
fnp, - np, Ah 1.2

The interrelationships between £np, d¢np/dh, T, and H, all as a function of
height as expressed by equations (1), (2) and (3), are shown picto_rally by four
of the six height-related graphs of Figure 1. This figure, which depicts the
properties of a portion of the 1974 U. S, Standard Atmosphere (in preparation),
was developed from a preliminary set of abbreviated tables representing a por-

tion of this revised standard atmosphere (Kantor and Cole 1973), Geopotential
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height is scaled linearly along the abscissa of Figure 1. Atmospheric preg%sure;
which‘is'plotted in the form of the natural logarithm of the ratio (p/p,), bas its
ordinate scale at the left of the figure, and is depicted by the lower of the three
lines diagonally crossing the entire figure from upper left to lower right. In this
presentation of préssure, p; in the ratio (p/p;) has been made equal to one Newton
per square mete; (i.e., 1N m?), so that the numerical values of (p/p,) are
those of p inN rn“2 , while the scale of ¢n(p/p,) at the left of the figure implies

no dimensions.

The graph of d¥np/dh, which quantity is negative and inversely proportional to T,
shows that the slobe of ¢n(p/p,) versus h, or equivalently the slope of Ynp versus
h, is constant only in height regions over which T ig invariant, These portions of
the graph of dan/dh versus height corresponding to constant T (i.e., the three
height intervals 11 to 20 km', 47 to 57 km', and 84,852 to 89,716 km') consist
of horizontal straight-line segments, while the remainder of that graph consists
of 5 curved segments. The scale height, which is directly proportional to T, is
seen to remain within the range of 5,45 and 7.95km’, with a median value of

6,5km’. :

B. Dengity-Height Relationship 1

When the differential form of the hydrostatic equation is combined with the differ-

ential form of the equation of state to eliminate the differential of pressure, we



obtain the following relationship between temperature and the density-height

function:

-dh |GM 4T
T = _— = 7
dfnp [R dh] )

In the absence of an analytical expression for p(h), a numerical approximation

for dh/d%np leads to a mean value of temperature T for the heightinterval h, - h, :

— h, -h GM T,-T
T = 2~ + 2 1 (8)
anl -fnp, | R h2 -h,

In terms of scale height, this expression becomes
. h, -h H,-H
H=__2 1 |1+_2 1L (9)
€np, - an2 h2 - h,

It is important to note that while equation (8) expresses the mean temperature

for the layer h; to h,, the expression involves the average gradient of T with
respect to h within that layer. A similar situation prevails for the expression
of the mean scale height in equation (9), where H = (H, + H;)/2. Since prior
knowledge of the value of neither (T, - T,)/(h, - h;) nor (H, - H;)/(h, - h,) is
generally available, equations (8) and (9) are not of themselves useful relatiorli'v\_
ships for temperature-height determination. One version of the following ex-
pression derived from equation (9), however, will be of special importance in an

uncertainty analysis in Section IV, This expression is

{ (H, +H,)/2
= (10
fnp, -fnp,  (h, -h,)+(H, -H))

Equation (10) is written for the case in which h, > h,, as when data are heing
analyzed from lower to greater heights, such that p, > p,. If the equation is fo

7



apply to data being analyzed from greater to lower heights, as is the preferred
case for the integral form of the density-height function, involving the normal
atmosphere, h, is greater than h, such that p, >0, and equation (10) must be

rewritten as

1 (H, +H,)/2 H -
= = (10a)
fnp, ~fnp;  (hy -hy) +(H, - Hy) Ah+AH /) .

In this expression Ah is always positive, and AH is positive in regions of positive
temperature gradients, zero in regions of zero temperature gradients, and neg-

ative in regions of negative temperature gradients,

C. Density-Height Relatjonship 2

The integral of the hydrostatic equation, when combined with the equation of state
to eliminate the pressure, yields the following directly useful integral expression
relating temperature fo density:
o, oM 1 (M
T =21 T 4 oo — p(h) dh (11)
T 'R p
q q hl

The temperature Ty is not the mean value of temperature for some layer, as in

the case of T in equation (4), rather, it is the temperature at the specific height

hq.

It has been demonstrated (Minzner, etal. 1964 and 1966) that the properties of
equation (11), when applied to a helium atmosphere, differ markedly from those

observed when the equation is applied to an argon atmosphere. With an air at-

mosphere having a mean molecular weight of about 29, the properties of this



equation are similar to those found when the equation is applied to an argon at-
mosphere in which the integration optimumly proceeds from the greatest to the
léwest altitude of the density-height data. Inthissituation, T,, p,, and h, are
each associated with the greatest height of the data set, while T g Pg» and hq are
each associated with the running value of h, This is the height for which the value
of T q is being computed, a height which varies progressively from b, to the low-

est height of the data set as the calculation of the profile proceeds.

Because p(h) is usually known numerically rather than analytically, it is conven-
ient to replace the integral of equation (11) with an appropriate series approxima-
tion, one of which is governed by the logarithmic trapezoidal rule (Smith 1965,
Minzner, etal, 1965), With the use of this approximation, equation (11} may be
rewritfen as

~ GM 1 i (hj_l"hj)(Pj"pj-l)
anj -an}- -1

(12)

i=2
The logarithmic~trapezoidal-rule approximation is a particularly suitable one

for the integration of atmospheric density with respect to height, because, in a
graph of measured values of ¢np versus h, the straight-line segments between
successive data points exactly represent the conditions of the logarithmic trape-
zoidal rule, and also very closely represent the conditions of the reél atmosphere,
The latter is evident from the nearly straight-line segments of an idealized ver-
sion of the real atmosphere shown in the graph of f:!n(;r:»/p1r ) versus height in Fig-

. ure 1. For this graph, which represents the densities of the 1974 U, 8, Standard



Atmosphere, the Vaflue of p, was chosen to'be 1 x 1073 kg m™3, so that the s%ngle
ordinate scale at the left of the figure applies to both ¢n(p/p ) and &n(p/p ). The
shape of the curve {n{ p/pr) versus h is identical to the shape which the curve ;znp
versus h-would havé, since the values of n(p/p,) v8. h and of Qn,.o vs, h are off-

set by the constant difference fnp, at all heights,

Figure 71 also contains a graph of Qn(bi /p,) in the form of a continuous straight
line immediately above the graph of En(p/pr ). This single straight line
diagonally across the entire figure is characteristic of the density of an isother-
mal atmosphere extending upward from a height of 7, 625km where the standard-
atmosphere density is 5.8281 x 107! kg m™?, and where the temperature and the
corresponding scalé height are 238,587 Kand 7,000 km', respgctively. For this
specialized atmosphere, the logarithmic-trapezoidal rule represents a series
which exactly duplicates the integral of equation (11). The small deviations of
the slopes of &n(p/p ) versus height from those of fn(p;/p,) versus height show
the small influence of the variation of atmospheric temperature from the fixed
"value, 238,587K, (in the height region of 10 to 90km’) on the general shape of
the curves of ¢n(p/ p,) and £np versus h. (The influence of temperature variation

upon the curves of Qn(p/pr) and ¢np versus h is gimilarly small, y

In the evaluation of T 9 by equation (11), or by any appropriate approximation of
that equation as exemplified by equation (12), a knowledge of the initial tempera-~

ture T, is of importance only for the upper regions of the profile. For hq =h;,

10



the value of (91/Pq)T1 is exactly T , since p, = Pq and the integral term is, of

I
course, zero, As the value of hq decreages from h,, i.e.,as¢h, - hq) increases,
the value of the relative contribution of the density-ratio term decreases, while
that of the integral term correspondingly builds up. When (h; - hq) increases
from zero, first by one scale height and then by three scale heights, the relative
contribution of the density-ratio term to T, decreases from 100% to about 37%,
and then to about 3%, because of the large decrease in the value of (pl/pq) over
these height regions. Simultaneously, the value of the integral term grows cor-
respondingly. At heights of more than three scale heights below h,, the value of
Tq is determined almost completely by the integral term alone, Figure 2 shows
the relative contributions made to Tq by the density-ratio term, and by the inte-

gral term of equation (11) as a function of the range of the limits of integration

(h; - h,) expressed in units of scale height,

The graphs in Figure 2 are based on the density-height profile for an isothermal
atmosphere (T = 238.587K) for which fnp is a linear function of height as pre-
viously shown in the graph of ¢n{p, /pr) in Figure 1. Only small variations from
the values of the two terms of equation (12) depicted in Figure 2 would be seen

for caleulations based on a real, variable-temperature atmosphere.

The elimination of T between equation (12) and equation (3) yields the following

expressioh for scale height:

q .

f7l 1 h:
Hq =_.1.-H1+__- (J
Pq Pq

-1 'hj)(pj-pj-l)

(13)

j=2

11
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Tigure 2. Relalive Contribution Made to the Calculated Temperature by the
Density-Ratio Term and by the Integral Term of Equation (11) as a Function of
the Size of the Altitude Range of Integration, for a 238K Isothermal
Atmosphere :

The relative contribution of each of the two terms of this equation to Hq, as a
function of the range of integration (h, - hq), follows exacﬂy the same pattern

shown in Figure 2 with regard to T .

Atmospheric sounc}ings of both pressure and density have for mény years served
as the basis for the determination of the height profiles of temperature and scale
height. From pressures, these profiles are obtained through equations (4) and

(&) respectively, \;vhile from densities, they are obtained through one or another

version of equations (12) and (13), respectively. Itisobvious thatthe uncertainties

12



of these derived temperatures énd scale heights are a function of the uncertainty
in the measured quantities, pressure or density, Somewhat less obvious is the
fact that the height interval between successive observations of pressure or
density strongly influences the propagation of the observational uncertainties
into the computed temperatures and scale heights, A rigorous error analysis
of both of these pairs of equations demonstrates this situation, The pressure~
related equations are analyzed in Section III, while the density-related equations

areanalyzed in Section IV,

13



III. UNCERTAINTY OF TEMPERATURES DEDUCED FROM PRESSURES

The error-analysis method employead is the first-order Gaussian method, wherein
each variable y; entering into the expression of a particular function of these
variables x(y;) is assumed to have an obéervational uncertainty -5 y; which meets
the conditions of a Gaussian or normal distribution about Sr'i ., where §i is the
mean of a set of individual observations of the ith variable, or t‘he true value -

of the ith variable. Thus, if the value of x is determined from the functional

expression X(y; ), the value of 6x, the implicit uncertainty in x, is given by

2
60? =3 (ﬂ- 6yi) (14)
1

ayi

Applying this relationship to the variables of equation (4) yields,
- for .\ [T 2 faT 2]
v (@ o) (G oon)  (Foa) " oo

It may be shown that the partial derivative of T with respect to any one of the

independent variables y;, ih equation (4) has the general form

aT - kAh 8y,
— ayi - ——-—-——-—-—-———-5 - —_— (]6)
oy; (8np, - fnp,)* v

14



where Ah is associated with (h, - h,) without benefit of subscripts. Applying

this géneralized expression to equation (15) yields
- +kAh ép\? /8p,\? [Ban\?|*
&T = : + + (17
_ (anl - an2)2 Py P, Ah

where 8p, and 8p, are the pressure uncertfainties of two consecutive pressure-

height values, and §AhL is the uncertainty of the height interval Al between

the corresponding two pressure-height values,

Dividing each side of equation (17} by the appropriate side of equation (4} yields

the relative uncertainty

T sp\? (op\? feam\z]r
a. ! R G R (18)
T fop, -fmpyj\ P/ \P; Ah

It is convenient to assume that all theAuncertAa:inty of a preSsure—-height peint is

o

in the pressure, and that the height increment is exact.. ~In this case, the values
of both ép, and p, are corréspondingly increased over their actual values, and
the term involving §Ah in equation 18 vanishes, It is further assumed that the
relative uncertainty in measured values of p is the same at h, and h,, i.e.,
ép,/p; = 6p,/p,y = 6p/p. These two assumptions permit equation (18) to be re-

duced to the simpler form,

ﬁ = _._..__._\/7___. 8p | (19)
T fop) -fnp, p ,

From equation (6) it is apparent that 1/(fnp, - inp,) in equation (19) may be

replaced by (}—I/.f_\h)l,2 where H is the mean scale height for the layer
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i12 -h, =, , . Thus, equation (19) may be rewritten as
6T i 5 8 |
= = x/f(——) .2, (-‘3) (20)

This equation indicates _that (BT/T), the relative uncertainty in T the mean
temperature of a layer (&h), 2 (i.e., the layer ‘bounded by pressures p, and p,),
is equal to the relative uncertainty “in the ‘pfessure measuremen.ts (8p/p) times

a coefficient A, 2 This coefficient is seen to depend ﬁpon only two quantities,
the mean temperature T of the layer h, - h, (T being implicit in H), and (1/Ah),
the reciprocal of the thickness of the pressure-sampling interval (h, ~ h;). Since
the maximum Valu;e of T in the earth's atmosphere below h = 100 km' is less

than twice its minimum value, and since Ah can, in principle, be made to vary
over many ordérs df magnitude, it is apparent that Ah is the dominant facior in

determining the propagation of (8p/p) into (8T/T).

A graph of the coefficient A, , as a function of Ah for three specific values of

T, 169,10 K, 241.57 K, and 314,04 K, is given in Figure 3. The first and

third of these tempefatures were selected in part because they are close to the
lowest and highest atmospheric temperatures normally observed at heights below
120 km, while the second is the mean of the extremes. In addition, these three
values were specifically selected to correspond, respectively, toa particular set of
three scale heights, i.e., {7/\/5), (10/7/2), and (13/v/2) km’. 'In each of these three
cases, the value of A, , is unity when Ah (equal to +/2« H) is a particular integer

multiple of one geopotential kilometer, i.e., 7, 10, and 13km', respecfively.
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Figure 3. Value of the Coefficient "A, ' in Equation (20) as a Function of
Pressure-Sampling Height Interval for Each of Three Atmospheric Tempera-
tures Representing Approximately the Maximum, Median, and Minimum

: Values, Respectively, for Heights Below 100 Geopotential Kilometers
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-_it is interesting to note that, for the entire range of normally observed tempéra-

i

tures at heights below100km', the pressure-sampling interval Ah corresponding
to unity for the coefficient A, , varies between the limited range of 7 to 13 km',
The pressure-sampli‘ng height interval, however, may actually vary over

several orders of magnitude depending upon the design of the meas;;.lring system.
The value of the coefficient A, , could Qorrespondingly vary over several orders

of magnitude depending upon the choice of Ah.

Concentrating on the median value of T, and allowing the pressure-sampling
interval Ah to decreaise, first from 104 m’ t010> m’, and then to 102'111', causes the
value of Al’2 to increase first from 1to10, and then to 109, respectively, such
that the uncertainty in the value of T as expre_ssed by equation (20) increases by
identical factors for 'a fixed uncertainty in the pressure. Conversely, as Ah is

increased from 104m’to 10°m’, the value of A, , decreases from unity to 0.1,

such that the uncertainty in a related mean value of T decreases correspondingly.

Figure 3 shows that when mean temperatures are deduced for succeésive layers
from pressure observations having a fixed uncertainty, finer height resolution

in the resulting temperature-height profile is obtained at the expense of tempera-
ture accuracy, whileaincreased temperature accuracy is achieved at the expense
of height resolution. Since the ultimate accuracy of pressures obtained from

any high-altitude balloon-borne or rocket-borne pressure-sensing device is

limited by considerations of various perturbing phenomena such as outgassing,
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boundary layer, and shock wave, the value of 5 p/p has a practical lower bound.
Thus, (8T/T) * (Ah/y/2 + Hy which is equal to §p/p similarly has a practical
lower bound, and for this minimum value of §p/p, 5T/T is governed by the

value of the ratio (Ah/ ITIl);

Figure 3 shows the effect of variations of both T and Ah on the value of the
coefficient A 1,2 = V2 - H/Ah). By expressing Ah in multiples of one scale
height, the number of variables in equatioﬁ (20) is effectively reduced by one,
and values of 87T/T can be plotted as a function of Ah=n+ H (where n is the
value along the abscissa) for any particular value of 6p/p. Figure 4 presents

such a graph for each of nine values of pressure uncertainty.

In Figure 4, the straight-line graph for 1% uncertainty in p intersects the co-
ordinate for 1% uncertainty in T at the abscissa coordinate value of 1,414,
This same straight-line graph for 1% uncertainty in p intersects the ordi-‘
nate values of 10%, 100%, and 1000% at abscissa values of Ah equal to
0,1414, 0.01414, and 0,001414, respectively. This series of four suc-
cessively decreasing values of Ah, each being one fenth of the preceeding
one, yields a geometric series of four increasing values of 8T/ ’f‘, each being
ten times the preceeding oné._ A similar situation prevails for each of the eight
other Valués of 6p/p, for which lines have been plotted. The value of §T/T is
obviously varied over orders of magnituce by comparable variations of the value

of the ratio H/Ah, For height increments with a value of /2 times one scale
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UNCERTAINTY IN MEAN TEMPERATURE {percent)

10°2 | L
1073 10-2 - 10!

PRESSUBE-SAMPLING HEIGHT INTERVAL Ah (units of one scale height)

Figure 4. Percentuncertainty inthe Mean Temperature of an Atmospheric Layer
(for any one of nine percent uncertainties in the pressure-height data) as a func-
tion of the Pressure-Sampling Height Imterval (i.e,, the thickness of that Layer)
when that Mean Temperature is Deduced from the Atmospheric Pressure at the
Upper and Lower Boundaries of that Layer, and When the Mean Temperature is
At or Near 241.57K.
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height, relative temperature uncertainties are seen to be equal to relative pres-

gure uncertainties for all nine values plotted.

In order to show simultaneously the small additional influence produced by the
allowable range in the value of T as it appears both in 5T/T as well as intrinsi-
cally in H, the single-line graph for each value of 8p/p in Figure 4 is expanded
into a band in Figure 5 where the pressure-sampling height is explfressed in

meters as in Figure 3.

The lower left-hand edge of each band corresponds tq T = 169.10 K, while the
upper right-hand edge of each band corresponds to T = 314, 04 K with other
points a(‘:ross each band corresponding linearly to intermediate temperatures.
Thus, Figure 5 serves as a nomograph from which one may estimate the per-
cent uncertainty in particular atmospheric temperatures computed from pressure-
height data measured with a specified uncertainty over particular height

increments.

Three sample applications of this nomograph are cited: In the first it is desired
to determine the maximum pressure~gauge uncertainty allowable to achieve a
1% uncertainty in a mean temperature of about 240 K for a layer thickness
of 100m’, We look for the intersection of the 100m’ abscissa value with
the 1% ordinate value, and find that it lies near the 242 K value of the 0.01%
pressure—ﬁncertainty band, Thus, pressures would have to be measured with

"an uncertainty no greater than 0. 01% to achieve the desired results. Since it is
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Figure 5. Nomograph for Estimating Relative Uncertainty in Temperatures
(Calculated from Pressure-Height Data) as a Function of the Pressure-Height

Sampling Interval, and as a Function of the Value of the Temperature, for Each
of Nine Values of Relative Uncertainty in the Pressure-Height Observations
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essentially impossible to achieve such a small uncertainty in any rocket or bal~ ‘
loon measurements of pregsure, this combination of height resolution and
temperature uncertainty is essentially impossible to achieve from pressure-

height data.

In the second example, we assume a pressure-gauge uncertainty of 3 percent,
and a mean temperature of 180 K, and seek the temperature uncertainty associ-
ated with particular sampling-height increments. If the pressure sampling-
height interval is 3 kilometers, this ordinate value is seen to intersect the
appropriate region of the band for 3 percent pressure uncertainty at a value
corresponding to a temperature uncertainty on the ordinate sc:.ale of about 7. 4%,
or about 13, 3 K. A doubling of the layer thickness to 6 km would halve the

temperature uncertainty.

The third example involves the inverse problem of estimating the uncertainty
in the computed pressure differential associated with an assumed isothermal
layer of fixed thickness. If the layer has a thickness of 3km, as may be the
situation in the grenade experiment (Nordberg and Smith 1964), and if there is
an uncertainty of about 2% or 5 K in an assumed mean temperature of 250 K,'
the graph shows that the combined uncertainty of the two boundary pressures
lies between 0.3% and 1. 0% or about 0.6% on a logarithmic scale. For a layer
thickness of 1km, the boundary-pressure ancertainties would increase by a

factor of 3. If the assumed isothermal layers were used to generate
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density-height profiles rather than pressure-height profﬂes, the uncertaintigs
in the densities would be somewhat larger than in the pressures because of the
required vector addition of the temperature uncertainty and the pressure un-

certainty to obtfain the dénsity uncertainty.
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V. UNCERTAINTY IN TEMPERATURES DEDUCED FROM DENSITIES
Applying the first-order Gaussian method, equation (14), to the determination
of the uncertainty in temperatures deduced from density-height data through

equation {11) leads to

21%

oT 2 AT 2 4-l oot 2 4T
- q q E : q q
i

% i=2 9; Pq

provided that we assume all the uncertainty in a density-height point to be con-
centrated in the density. Because scale height combines the temperature with
several constants, its use facilitates the expansion and analysis of an equation
like equation (21}, Consequently, it is convenient to rewrite that equation as

' oH 2 /3H 2 9-1 45K e 2%
- q q q q
SH, = (2 -oH,] +(—2.50) + z r “8pj) +{—2 -8, (22)
3H, 3 3

Py j=2 \ 99 Pq

Both equations (21) and (22) involve (g + 1) terms, where q is the number of
density-height data points, The first térm is associated with the uncertainty

of the temperature or the scale height at h,, while each .of the q additional terms
deals with the uncertainty of one of the successive g dgnsity-height data points,
respectively. Three of the (q + 1) terms have a uniqu: format. These are the
first, the second, and the last terms; those involving 8T, (or 8Hy), 8p, ,‘

and ﬁpq, respectively., The remaining terms, however, the third through the
qth term involving 6p, through 5Pq-1 y respectively, have a common format,
Thus the sum of these common-format téw.ns may be expressed as the summa-

tion of a general term. Applying the operators indicated in equation (22), dividing
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I})oth sides of the resulting equation by Hq, and introducing equation (10a) yieids

the following equation:
LA\ G S T Y R\ Y A T D LA
Hq Hq Pq H, I-lq Pq 12 I Pq Ah+AHJ, o
1] o fui-o; H [T Ty H 2 f8p.\?
) DR IR ol s R ol e -] @
j=2 12 Py ah+affi, i 7 Pq Pq Ah+AHS P
‘ g q
fofrledfetal, g2
q-1,49| " H T R TS| R T
Pq \ #q Sh+AHfo oy q| Hg oq 5 Pq Bq

where s
H Ah
%2 =(H"'Ah AH) (24
q + 1,2
H Ah
aj*l,j=(ﬁ_' AH) (25)
. Oh+oHS
H Ah
%m:(ﬁ“m 20
, ’ q it
. (H Ah an
[24 =/ — 2@ —
'ls ]
k! ! H, Ah + AH q-1,q

Equation (23), which is developed in Appendix A, is very much more complicated
than the comparable uncertainty expression in terms of pressure-~height data as
represented by equation (18), The considerable difference in the complexity
between the two equations stems largely from the fact that equation (18) involves
the uncertainty of only two pressure-height data points and the mean temperature
for the correspondiﬁg height layer, whiie equation (23) involves the uncertainty
of many consecutiveg dengity-height daté points, each of which contribhutes at

least a small amount to the value and uncertainty of the temperature or scale
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height at height hq. It is emphasgized that the quantities Tq or H q in equations
(11) through (13), and again in equations (21) through (23), represent values for
specific heights, and not mean values for specific layers as in the case of the

pressure-related equations,

Kach element of equations (23) through (27) is associated either with a specific
height or with a specific layer. Elements having a single subscript, e.g., H I3
Pys Bps Dy 1 Pjaqs Pgoqs Pgs and Hq signify the value of the particular quantity

at heights h,, hj, hj TR:T

T hq_1 , and hq, respectively, Quantities with a

double subscript, e.g., @ s O g g ete., represent a quantity associated with
particular layers, i.e., the layers bounded by h, and h,, or by hj .y and h]-, ete, ,
respectively. Thus, @, 5, as expressed by equation (24), representsanalgebraic
expression of four differe.nt quantities three of which, namely H, Ah, and AH,

are associated with the layer h, to h,. In equation (24), H is the mean scale
height for the layer Ah = h, - h,, while AH represents the change in scale

height within that layer, i.e., H; - H;, such that only in a region where the
gradient of H or T with respect to height is positive will AH be positive. The
quantity H is, of course, the value of H at height hq. Similarly, & g% e
and Oy.1,q» 38 defined by equations (25), (26), and (27), respectively, each

represent quantities associated with the particular appropriate layers. Equation

(23) also includes the doubly subscripted quantities

(), () ), (i
Ah+AH/ Ah+AHj_]’j Ah+AHjjj+l’Ah+AHq_]’q
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each of which represents one factor of the right-hand side of equations (24), '
{25), (26), and (27), respectively. The influence of non-zero gradients in thé
temperature-height profile is impressed upon 6 H q/ Hq through all the double

subscripted quantities in equation (23).

In order to more clearly see the influence of sampling-height interval alone on
5Hq, it is convenient to assume an isothermal atmosphere, andto correspondingly
simplify equation (23), In this case, scale height would not vary, but would
remain fixed at a value H over the entire region of integration, and the following
relationships wouid apply: H, = Hq =H, H=H, and AH is zero in all layers.
Under these conditions, equations (24), {25), (26), and (27) become unity, as

does the ratio H,/ H,, and equation (23) may be rewritten as
) _
H, Pq/ \ Hy Pq Ah/y o\ 2y

a-1 Py -o\/H - HY 8 2

j+1 7P PP P;

+ )= J 0 =) = (28)
ji=2 [ [\ Pa it Pq Ahfi i)\ A
3 fo-n by~ P H /6 2
i=1 Pq Bh/g-1,9]\ Pq

It can be shown that

=

PN
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such that these two terms in the coefficient of (apq/ pq) in equation {28) cancel
each other, Then, if we impose the additional condition that the height incre~
ments between successive density-height data points are constant over the entire
Tregion of integration, this condition plus equation {29) permit the further simpli-
fication of equation (28) to

Hq Pq H,

o 3 a-t gy - 2. 2
+(__H_>2 (Pz"P: ff_x_) +Z(pj+1’2pj+”j-l_i“i) +(pq"’q-1. 5”@)}
Ah Pq ! i=2 fq P A P Pq

If we impose still another restriction, i.e., that the relative uncertainty of the

(30

density data has the constant value &§p/p for all heights within the range of inte-
gration, 8p,/p, = Bpj/pj = apq/pq = §p/p, and we may rewrite equation (30) as

SH, 2 o\ /8H,\?
CYARTYALY
(3
T\2 2 9-l 2 N2
G R e ]
Ab Pq j=2 Pq Pq g

The restriction permitting this simplification, while somewhat unrealistic from

the point of view of any measuring system, is acceptablebecause, it will be shown
below, the relative uncertainty of only pq enters significantly into the value of
6Hq/ Hq. It is convenient {o represent the sum of fhe serias of the squares of the sev-

eral density ratios in the coeificient of {(§p/p)? in equation (31) by (Sq)2 s+ Such that

2 q-1 2 P
) pZ-pl pj+1'2p]'+pj_1 pq'pq-l
Sy = ( ) +z< . (32)

Py j=2 Py Pq

with this simplification equation (31) may be rewritten as
SH,\? AVL:ANE ENEAVLAN b |
q
— ) =t {—= 8 = l— (33)
Hq Pq H, Ahj\ p ‘
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Finally, recalling from Figure 2 that the ratio (p, /pq) causes the contributifn
of H toH qin equation (13) to become negligible when the integration has pro-
ceeded downward from h; by more than about three scale heights, we recognize
that the contribution of §H,/H, to 8Hq/ Hy in equation (33) must similarly be

negligible for hq sufficiently below h;., Thus, for this condition, "equation (33)

sH H\/5
R P (_>(_f) (34)
Hq 9 \Aan/\ p

Also, since §H q/ H q is identiecally equal to 6Tq/ Tq , it is convenient at this point

may be approximatéd by

to return from scale-height notation to temperature notation, and equation (34)

9 ~s o f—}{— (35)
Tq 9 \Ah o

This equation represents the relative uncertainty in Tq, the femperature at

is rewritfen as

height hq, as deduced from a set of density-height data measured with a constant
relative uncertainty (8p/p) over the entire range of a height region h; down to hq,
where (h, - hq) is equal to at least three scale heights, in a portion of a planetary
atmosphere which is isothermal, at some value associated with H, These con-
ditions might apply to the earth's atmosphere at heights above about 400 km.,
Since equation (35) excludes several of the variables included in the most general
form of the uncertainty expression as given by equation (23), this simpler version
is more readily examined for the influence whichvariationsinthe sampling-height

interval Ah alone have upon 6Tq/ Tq.
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Equation (35) for 6’I‘q /T q° interms of the relative uncertainty in density, is very simij-
lar to equation (20) for 6T/ T interms of the relative uncertainty in pressure, except
that Sqin equation (35) takes the place of V2in equation {20). Thereinlies a great dif-
ference, because the quantity Sq is a dimensionless function of three variables, ﬁ,

Lh, and (b ~ hq), and has a value which varies between V2 and zero, as Ahvaries

from large valuesto zero. For Ah> 5H, the value of Scl approaches /2 asymptotically

as Ah approaches infinity, independently of the value of Hor (b, -h;). ForAh<0.2H,

the value of 8, decreases linearly with decreasing values of Ah, for any fixed value of
Hor (h; -hy).

The influence of variations of both Ah and (hy - hq) upon 8_, and implieitly upon

q’
8T,/T,, is seen in Figure 6. Here, for a fixed value of H = {10/A/2) km, a band
of values of Sq is plotted as a function of Ah on a fully logarithmic scale, with
ordinate values of Sq given on the right-hand side of the figure, The upper limit
of the band is designated S, r,,5, and is plotted as a line of long dashes, while
the lower limit of the band is designated Sq,min » and is plotted as a solid line.
The range of the values of Sq within the band, at any particular value of Ah, rep-
resents the influence of variations of (h; - hq) at that value of Ah, with the value
of 8, increasing as (h, ~ hy) decreases, The smallest possible value of (b, - h g
at any particular value of Ah, is of course Ah, émcl hence S, ,,, depicts the locus
of the values of S, associated with the condition that (h; - hg) = Ah., Thus, this
upper limit of Sy represents the value of cquation (32) when that equation involves

only the first two density-altitude points of a data set, i.e., the value of Sq for

the case when STq / Tq is being computed for the height hq associated with the
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Figure 6. Graphs of Three Quantities as a Function of Densgity-Sampling Height

Interval Ah, i,e., (1) the Limited Band of Values of a Particular Series of
Terms Defined by S , and Related to Ah, (2) the Value of the Last Term of that
Series, and (3) the Value of the Ratio of Mean Scale Height to Ah

second-highest density-height data point in the sounding, For this situation, the

right-hand side of equation (32) reduces to 26 g~ " )/p q] . As the height for

which one computes 6Tq/ T q is lowered from h,, such that (b, - h q) becomes

increasingly large, the value of Sq slowly decreases, and asymptotically ap~

progches a lower limit Sq’mm when (h,

hq)

is greater than three scale heights.

It is convenient to define the ratio of Sq,max to Sq .min 28 R, and to examine the

variation of R with respect to variations in Ah. As long as Ah is smaller than

Al

32



about 0.2 H, R retains a nearly constant value (a value which is seen graphically
to be approximately equal to v/2), and both 8q,max and 84,min are seen to make
an angle of about +45° with respect to the abscissa. Because of the feature of

a nearly constant slope of +1 for both 8y max and 8q min in the region where

Ah < 0,2H, this region is hereafter désignated as the small-increment regime.
As Ah exceeds 0.2H, and increases toward 5 H, the slopes of both S, ., and

S gradually decrease toward zero. However, the slope of 8q n,x decreases

q,min
more rapidly than that of 8, i, so that S, ,,,, approaches S 1,i, at a common
value v/2, while the value of the ratio R decreases from /2 toward unity, For
Ah > 5H, the value of R is essentially constant at unity, and the slope of the line
common to both 8y 4% and 8y mip is essentially zero. The feature of an essen-
tially zero slope for this common line representing Sq versus Ah, specifies a
regiﬁn which, because of the related large value of Ah (i.e., Ah > 5 H} is here-
after referred to as the large-~increment fegime. The region between the small-

increment regime and the large-increment regime, i.e., the region for which

0.2 H < Ah < 5H, is hereafter referred to as the transition regime.

‘

In the large-increment regime, where S and S

q,max q,min Are essentially identical,

it is apparent that Sq.is essentially independentof (h, - hq). In the small-increment
regime, the concern for the influence of (h, - hq) upon Sq remains only for values
of (h, - hq) less than about 3 H. Because equation (35) is based upon the restric-
tion that (h, - hq) is greater than 3 H, and because S, approaches Sq yin for

such values of (h, - hq) in all three regimes, it is immediately apparent that the
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general factor Sq in equation (35) should be replaced by the specific value Sgnin-
It is somewhat less apparent that §p/p, the general expréssion for relative un~
certainty in equation (35), aught to be replaced by 80,/Pg, the specific relative
uncertainty for hq, particularly when equation (35) is applied to the small-
increment regime. The reasons for the latter replacement stem from the facts
that the following dual relationship exists for the dual conditions (h; - hg) > 3H,
and Ah < 0.2 H:

(1) The value of the series S, which becomes essentially Sg mjp for
(h, - hy) > 3 H, simultaneously approaches the value of (Pg = Pq-1)/Pq,
the last term in equation (32), defining S;. This near equality between
Sq,mm and (pq - Pg-1 )/‘pq in the small-increment regime is demonstrated
graphicaily in Figure 6.

(2) The term (o4 - pq-l)/pq is properly associated with th;e specific un-
certainty cSpq/pq rather than with 8p/p. This situation is evident from
the fact that the quantity (pg - #_y )/pq is a coefficient of 8py/pq in
equation (30), which, except for an isothermal condition, is a general
expression equally applicable to both BHq/ Hq and 6Tq/ ’I“q. Thus, at

least for the small-inerement regime, equation (35) may be rewritten

5T H\/8p
T s Swi“‘("‘)("ﬂ) | oo
q A/ pq

Even in the large-increment regime, where the value of Sq min approaches

as

[\/E(Pq -.£g-1)/Pg], the value of Sy i is still dominated by (Pq = Pq-1)/Pg>
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{which is equal to unity i_n‘this regime), and therefore, S q,min should still be

associated with 8p q/pq .

Because {p q = Pg-1 )/, Pq approaches unity in the large-increment regime, while
8q,min @pproaches V2, it is reasonable to write the following special form of
equation (36) for that regime: ‘
5T H\ /ép
4 ~2. (,_) (_q) (37)
| Tq 4h Pq
This equation is seen to be analogous to equation (20) involving uncertainties in

pressure-height data,

In addition to the graphs of Sq’max . Sq,min , and (pq - Py )/pq versus Ah,
Figure 6 also contains a graph of the function (H/Ah) versus Ah, for H = (10/
\/5-) km, or T = 241,57 K, This funetion, which obviously varies inversely with
Ah, is seen to have a constant negative 45°ls10pe for a fixed value of H, When
this function is multiplied by Sq,min » 8 quantity wlﬁch according to Figure 6

is seen to have a +45° slope in the small-increment regime, the product for

the small-inerement regime is essentially a constant (independent of Ah) with

a value near unity, for all values of H or T. This situation is depicted in Figure
7 where the value of the product [8y i, - (H/Ah)] versus Ah is plotted in all
three regimes for each of three values of H, (7/4/2), (10/v/2), and (13/4/2) km',
consistent with the mean temperatures 169.10, 241,57, and 314, 04 K, respec-

tively. Because of the characteristics of this product, equation (35) as applied
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Figure 7. Value of the Product of Two Factors (Comprising the Coefficient of
the Uncertainty of Observed Densities) in Equation (36) as a Function of Density-
Sampling Height Interval, for Each of Three Values of Mean Scale Height Con-
sistent with Three Specificd Temperatures

to the small-increment regime may be replaced by

5T 8p
”T'El ~d (38)
q Pq

Thus, three different expressicns represent the value of ﬁTq/ Tq as a function
of uncertainty in dehsity-height data, equation (38) in the small-increment
R

regime, equation (37) in the large-increment regime, and equation (36) in the

transition regime,

The application of the data from Figure 7, as representative of the three equa-

tions noted, to each of nine particular values of uncertainty in density-height
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data, yielded the nomograph shown in Figure 8. This figure shows the percent
uncertainty in the temperature, derived from density-height data through equa-
tion (12), as a function of density-sampling height interval for a band of normal
atmospheric temperafures, 169 K to 314 K, and for a wide range of densit'y-
height uncertainty, 0.01% to 100%, This nomograph can serve as the basis for
estimating the relationship between the uncertainty in each value of a set of
density-height data to each point of the related Temperature-height profile, or

vice versa, for the region of the earth's atmosphere below about 120km.

The examples of hypothetical use of the pressure-data nomograph, discussed
in Section III, could be readily transposed to apply to this density-data nomo-
graph, In particular, Figure 8 shows that, in order to have no more than a

1% uncertainty in a 245 K temperature, for a temperature height-profile with

a height resolution of 100 meters, the relative uncertainty in the density obser-
vations need not be smaller than 1%, This value is 100 times larger than the

0. 01% uncertainty required of pressure data to meet the same conditions, and

represents a very significant relaxation of the measurement requirements,

The estimates deduced from the use of this nomograph are theoretically accurate,
as long as the data to which the nomograph is applied comply with the three re-
strictions imposed during the preceeding development. It will be seen, however,

that one of these restrictions may be essentially eliminated, while a second has
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Figure 8. Nomograph for Estimating Relative Uncertainty in Temperatures
{(Caleculated from Density-Height Data) as a Function of the Density-Height
Sampling Interval, and as a Function of the Value of the Temperature, for Each
of Nine Values of Relative Uncertainty in the Density-Height Observations
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only a small influence, One may recall that these restrictions are as follows:
1. The height hq associated with ’1‘.:l is more than 3 scale heights below
h, the greatest height of the sounding, i.e., (h; - hq) > 3 H,
2. The relative uncertainty of the density-height data is constant over
the entire height range of the sounding,
3. The atmosphere is isothermal over the height range of the sounding.
The first of these restrictions must be retained unless one has some independent
means for determining T, or H, and its uncertainty as required by equation (33),
Only for (h; - hy) > 3 H will the ratio p, /pq be sufficiently small to permit the

associated term to be neglected in equations (34} through (38).

The second restriction is not a very significant one since it has been shown that
the constant factor (6p/p), used as the general expression for density uncertainty
in equation (35), is dominated by the particular value (ﬁ.ﬂq/ﬂq) agsociated with the
density-height d:alta at hq. Thus, the need for (8p/p) to be constant over the
entire height range of a particular sounding can be relaxed without significantly

affecting the validity of any of equations (36}, (37), or (38).

The third restriction appears to he philosophically important because the earth's
atmosphere below 120km is certainly not isothermal., Actually, howevér, the
existance of the various non-zero gradients in the temperaﬁre profile has little
effect on éTq/ Tq. This situation is due to the fact that éTq/ Tq depends pri-

marily on the conditfions between the data points ( Pg-1 hq_l) and (pq, hq), and
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ixardly at all upon the condition between other pairs of data points, Even a nén—
'zero temperature gradient between the two specified data points has only a small
effect, and this cém be readily accounted for. This is accomplished by reintro-
ducing into equation (36) certain temperature-gradient-dependent coefficients
which are associated with 8p,/p, in the general version of BHq/Hq (or equiva-

lently 8T q/ Tq), as expressed by equation (23).

To begin with, (H/Ah) in equation (36) is replaced by its original form H/(Ah + AH)
as used in equation (23). Then, Sq,mm, which has been shown fo be almost
exactly equal to [(pq - 9q—1)/9q] for isothermal conditions in the small-increment
regime, is replaced by the product of this ratio times its associated coefficient

a

q-1, 9 from equation(23). Thus, for an atmosphere with varying temperature

or scale height, we may rewrite equation (38) for the small-increment regime as

T, C vl |\m v an . o
q Pq TAH/ Ly q N g

Using the value of ®g.ys B8 defined by equation (27), and replacing H by (2H g™t
AH)/2, where AH = Hg,y - Hq), and remembering that Ah = (hq_1 - hq), we
have an expression for STq/Tq in terms of Hq_1 and Pq-1 at height hq_1 , and

in terms of Hy, Py, and apq at height hq:

2 |
0Ty ((quhﬁ‘H) ,_ An ) (pq'pq—l)(apq) (40)
= 5
T an @R+ ADY | o b/
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If is interesting to examine an example of the use of equation (40) in terms of a
realistic set of data, applicable to the small-increment regime, as taken from
the U,S. Standard Atmosphere 1962, Choosing the height interval, Ah = 1km’,
between hq .1 =66 km’and hq = 65 km|, in a region of negative temperature grad-
ient, AT/Ah = -4 K/km, we find Pg-y and py to be 1.3482 x 10~ and 1.5331 x
107 kg m™3 respectively, Hq = 7. 0709 km, and AH = -0.1173km’, The substi-
tution of these data into equation (40) leads to a value of 1.076 for the coefficient
of 6pq/pq, a value involving only a second-order difference from the unity coef-
ficient of equation (38); i.e., BTq/Tq, in this case, would be 1.076 times ﬁpq/pq,
instead of 1. 000 times Spq/pq for the isothermal case, Thus, the assumption of
isothermality, both in the development and use of équations 36, 37, and 38, is
seen to infroduce only a second-order error, and accounting for this error is un-

necegsary in most uncertainty determinations,
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V. CONCLUSIONS: A COMPARISON OF THE DENSITY-DATA NOMOGRAPH
WITH THAT FOR PRESSURE DATA
The nomograph rialating 8T/T to sampling-height interval of density data for
various temperatures and density uncertainties depicted in Figure 8 is based on
the same range of values of temperature and sampling-height interval used in
the nomograph of Figure 5, which relates §T/T to the sampling-height in-
terval of pressur;e data. In addition, the nine assumed values of §pf in Figure
8 are identical to the nine assumed values of §p/p in Figure 5. Thus, the two
figures are exactiy comparable, with the only difference being that Figure 8 is
for density data, while Figure 5 is for pressure data. A comparison of these
two figures shows that, at least from the point of view of height resoclution and
uncertainty of derived temperatures, density-height data are to be preferred

over pressure-height data.

In the large-increment regime, i.e., Ah > 5H, the nomograph of Figure 8 is
essentially identical to that of Figure 5. In thisregime, bothfigures show that
the uncertainty in the derived temperature is decreased as the height reselution
of the related temperature profile is decreased, i.e., as the sampling-height
interval is increased. Even the smaller sampling-height intervals within this
regime are so la¥ge, however, i.e., Ah =~ 5H, or about 30km’, that the height
resolution makes this regime essentially useless for temperature-height de-

terminations at heights below 120km’,

-~
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In the small-increment regime as well as in the fransition regime, Figure 5 and
8 are quite different from each other. In the small-increment regime {Ah <
0.2H), the uncertainty in the temperatures derived from density-height data is
seen to be independent of both Ah and T (or H), as long as th, - hq) >3H. In
this regime, STq /T a derived from densities is dependent only upon the un-
certainty of the density-height value assoéiated with the related height hq. It

is apparent that uncerfa.inty considerations place no limits on the usable fineness
of the height resolution of the density-height data, This situation is in contrast
to that associated with pressure-height data in Figure 5‘ where §T/T is seen to
depend upon T and Ah, as well as upon Bﬁ/p, and where ﬁ'f‘/ T becoxﬁes pro-
hibitively large for reasonable values of §p/p when Ah becomes smaller than

about 1km.,

In the transition regime, Figure 8 shows less difference from Figure 5 than in
the émall—mcrement regime. In this transition regime, the characteristics of
the function determining 8T/T from density-height data vary between those of
the small-increment regime and those of the large-increment regime, such
that 8T/T decreases slightly as Ah varies from about 0. 2H to about 5H, In
going from the small-increment regime to the transition regime, however, the
increased coarseness of the height resolution of the related temperature-height
profile would more than offset the correspondingly small decrease in tempera-~
ture uncertainty, particularly since the minimum values of Ah in this regime

are already of the order of 1km', Even in this regime, however, the
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density-height data yield smaller values of 5T/T than are obtained from

pressure-height data.

In geherzﬂ, a comparison of Figure 8 with Figure 5 shows that the density-height
data are far more desirable than pressure-height data at least from the point
of view of the size of the uncertainty and of the height resolution of the derived

temperature-height profile;
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APPENDIX A
DEVELOPMENT OF THE GENERAL EXPRESSION FOR

2 2
(8 T,/T P AND FOR (8 Hq/Hq)

1t is well known that temperature may be deduced from density-height data by

means of the following relationship:

h
. ] — ew—— q -
Tg=o Tty 5 ./r; p (h) dh (A-1)

where

£(h) is the function relating atmospheric density to geopotential height,

h, is the geopotential height of the upper limit of the region of integration,
in geopotential meters (m' );

h, is the geopotential height of the lower limit of the region of integration,
in geopotential meters (m'),

G is the geopotential gravity constant 9. 80665 m2sec-2 (m' )1,

M is the mean molecular weight of the air 28. 9644 kg (kmol)™!,

R is the universal gas constant 8, 31432 x 103 joules K~! kmol-!,

£, is the atmospheric density at hy,

T, is the atmospheric temperature at hl,

Pq is the atmospheric density at h 9’ and

Tqis the sought-after atmospheric temperature at hq.
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Because of the defined relationship between temperature and scale height H,

i.e., H=TR/GM, it is convenient to rewrite equation (A-1) as

H = 1.y lth (h) dh
R ——— W + —=» -
1 p (h) (A-2)
9 pg pedn, T T

where
H, is the scale height at h;, and

Hq is the scale height at hq.

Since pfh) is generally not known as an analytical function, for which one might
find a perfect integral, but rather is known as a set of numerical values of
density versus geometric or geopotential height, it is convenient to replace the
integral term in eﬁuation (A-2) by a series approximation. One possible form
of such an approximation is a series of terms each representing the area of
successive trapezoids under the graph of the natural logarithm of density versus
h, When the data, p versus h, is plotted on a semilogarithmic secale, i.e.,

¢np versus h, with successive data points connected by straight-line segments,
as is frequently the gituation for closely spaced density-height data, the series
of logarithmic trapezoids exactly fits the area under the graph. In using this

approximation to the integral equation, (A-2) may be rewritten as

L i (hy_y -hy) (o5 -py_;)

4
= + -
H 52npj - anj_l (A-3)

1
q g 1
Pq Pq j=2
The validity of the approximation of equation (A-2) by equation {A-3) improves as

the height increment befween successive density values decreases.



The unceftainty in the computed value of H q is based on a function involving the
partial derivative of I-Iq with respect to each of the independent variables. These
include H; and the appropriate number of density -height data pairs; i.e.; h_,

i

Py hj » P (forj=2toq-1);aswellas h With the assumption that the

g’ Pq
uncertainty in each data pair is entirely in the density value, we are interested
in the partial derivatives of Hq, as expressed by equation (A-3), with respect
to only fhe following variables: Hl’ Pys (forj =2toq-1), and Py having
the general designation y ;= These partial derivatives qu /9 y; multiplied by

the corresponding uncertainty 8y; are given in the following equations:

The product of 8H, times the partial derivative of H q with respect to H, is

simply
aH p. HY 8H ' ’
4. =4 L, 1yt .
5T 8H, {pq Tl .(A 4)

The product of 8p, times the partial derivative of H q with respect to Py is

ap, 1 Pq 1 fnp, - fnp; Pq Py fnp, - fnp, £y

It can be shown, however, that

tne, I—anl - (AthAH) a2 (4-6)
where the double subscript ''1, 2" on the right-hand membgr of equation {A-6)
indicates that Ah = (b, - h,), AH = (H, - H,), and H = (H, + H,)/2. When h,
is greater than h,, the left-hand side of eyuation {A-6) is positive, Ah is

positive, and AH has the sign of the temperature gradient 3T/ dh in the region

A-3



hl toh,. The same equation, with other consecutive digits, as for example,
2,3 or 3,4, etc., indicates these same relationships for the corresponding -

height intervals.

Equation (A-6) combined with equation (A-5) yields

oH p, H H Ah e, fpy-0 H 8p
5, o T _l'—l'[(*'a_h"_ﬁ 5 WN\am — (A
ap, Pq 1 1 *OAHS 5 || Pq Pq 1,2 A1

The product of 8p, times the derivative of H q with respect to p, is a quantity
which, when modified by the introduction of equation (A-6), with each of two

different, but appropriafe pairs of digits, becomes

—

3H, H  Ah p, [py-0, H
B, " %P2 = 1 Ah+2HS Ll | eg \ #g Ah+AHS
- (A-8)
— — —
H Ah Py [Py-0y H : 8p,
1 an+AH/[, 5] | #q Pq Ah+AH [, Py

In this equation thé subscript "1, 2'" on each of two factors has the same signi-
ficance as it has on these same two factors in equation (A-7), while the sui)scripf;
"2 3" on each of two other factors signifies that the quantities I-i., AH, and Ah
within each of these factors are associated with the geopotential height incre-
ment h, to h;. Thus, for these iwo factors, Ah=h, - h,, H= (H, +H,)/2, and
AH =H, - H;. Equation (A-8) obviously involves two height increments, the ..

two which are separated by the height h,.

The partial derivative of Hq with respect to each of py, p4, .. s Pg_2 and

pq.y» When multiplied by 8p; (where j is successively 3, 4, ..., q-2, and g-1)
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and, when further modified by the appropriate introduction of equation (A-6), is
identical to equation (A-8) except for the successive incrementing of the sub-
scripts. Thus, 'a convenient form of the product of 5Pq-1' times the particular

expression for the partial derivative of H q with respect to Pq-1 is

aH, oo - (E Ah ) [pq_l_(pq_,—pq_z)( H ) .
aH,_ | “Fa-! boah+aH[ o 4 oq TV N
- [(E _oh ) } ["q—l _("q “’q—l) ( H- ) :l 8pq-1
i Ah+AB g-1.9 Pq Pq Ah+ AH q-1.9 Pg-1

In equation (A-9) the subscript "g-2, gq-1" on each of two factors signifies that

(A-9)

the quantities ﬁ, AH, and Ah within each of those two factors are associated with

the geopotential-height increment hq*2 toh q-1* SO that Ah =h q-2 = h q-1° H =

(H /2, and AH = H q-2 ~Hy_,- Similarly, in that equation, the sub-

g-2 T Hgy)
script "g-1,q" on each of two other factors signifies that the quantities ﬁ, AH,
and Ah within each of these two factors are associated with the geopotential-height
increment hy_to hy, so that Ah=hy_ -h,, H= (Hg-1+ Hq)/2, and OH =Hg -~

Hq. Again this expression involves two height increments, in this instance the

two separated by the height h _,.

Because of the common form of the partial derivatives of H, with respect to
Pys P3r sres Do p and pq L it is desirable to write a general version of equa-
tions (A-8) and (A-9) to express the product of Bpj times the partial derwatlve
of H a with respect to Py» where j is understood to have values ranging from

2 to g-1.



This general equation is

oH_ - [/H - Ah ] pi o (05~ Py H ,
..;_.9'. L] ap, = —_— "']—’— J J +
oy I Oh+BHf L Pq \ Pq [/ \BRFAR/G

- _ - {A-10)
H o T L ST S W | 6

Finally, the prdduct of 5pq times the partial derivative of H q with respect to Pq

when modified hy the introduction of equation (A-6), is
() Jo ()6,
apq fq 1 Ah+AH a-1,q | | Pq Pq Ah+ AH q-1,9
_ (A-11)
} (ill .fi)_i[(ﬁ, __ﬂ__) K”j 'Pj—l)}ﬁfg
1 pq/ ¢ ' 1 Ah+AH i-1, Pq - Py

J=

- In this equation the subscript "q-1,q'" on each of two factors has the same signi-
ficance as in equation (A-9), while the subscript "j-1, j" on another factor in the
general term signifies that the quantities ﬁ, OH, and Ah within that term are

associated with the general geopotential height increment hj_1 to h] . Thus, for

this factor, Ah=h; , -h;, H=(H; , *+H;)/2, and AH=H; , -H;.

j’

It is evideni that one part of this equation deals with the data assoeciated with the
single height increment Ah = (hq_1 - hq) between the lowest two density-height
values involved in the calculaﬁon of Hq, while another part of the equation deals
'with all the height increments between h 1 and hq, and their associated dénsity |

data.



Each of equations (A-4), (A-T), (A-10), and (A-11) is directly involved in the

Gausian expression for relative uncertainty SHq/ H a which follows:

§H 1 2 oH, 2 q-l 3H, 2 oH, L
-3-=-_ oM., SH,) +|—L8p, +Z (-—-——-—'Bp- +(——'¢5p ] (A-12)
Hy ~ Hg |\oH, 2, %, 30,

The first, second, and fourth terms within the brackets of this equation are

seen to represent exactly the squares of equation (A-4), (A-7), and (A~11),
respectively. The third term represents the squares of equation (A-10) evalu-
ated for j ranging from 2 to q-1. The bracketed portion of the right-hand side

of equation (A-12) is seen to be.multiplied by the reciprocal of H @ thereby im-
plying that each term of equations (A-4), (A-7), (A-10), and (A-11) must ulti-
mately be multiplied by 1/ Hq, either before or after these equations are squared
and summed to equal (6Hq/ H q)z. It is convenient in this case to do the multipli-
cation before équaring and summing. Equations (A-7), (A—iO), and {A-11), each

contain the doubly subscripted factor

(E._A_h__)
1 Ah+AH

in at least one term. It is convenient therefore to acéomplish this multiplication
operation in the appropriate terms by introducing Hy into the denominator of this
doubly subscripted factor, thereby converting this factor into a nondimensional
coeffi¢ient with a value close to uﬁity. ‘Then, in order to put the resulting coef-
ficient into proper prospective with respect to fhe remainder of the equation,

and also to conserve space in the uncertainty expression being developed, it is



convenient to define each of these modified factors by a specific symbol. - Thus,

from equation (A-7) the modified factor is defined as the coefficient ' t'xu., i.e.,.

_{H . _Ah :
%2 -(H_q Ah_-«!-.ﬁH)l ) o e

L b '

while the two modified factors involved in equation (A-11) are defined as

[H . | '
PORPIPS (£ LSRN . (A14)
%1 (H.q Ah+AH)j_1‘j
and e T
\ H . Ah SR
R (i : SR . T PR L (A-15)
Hje1 (Hq Ah+AH)jJ+1 T

The modifiedféctor from equation (A-10) is defined as the coefficient aq_'l;'q ,"
i.e.,

Ooiq = (ﬁﬂq_ Eh“%hﬁ)q_,,q (A-16)
Substituting equations (A-4), (A-7), (A-10), and (A-11), respectivefy, into the
successive terms on the right—h:;md side of equation (A-12), dividing each of these
Tequations by Hq . e., replacing each of the "1's" in the depom'mators of these
equations by H q), and simultaneously replacing the resulting IInodified doubly
subscripted factors in these equations by the equivalent coefficient forms defined
in equations (A-13) through (A-16), leads to the following expression for

(6Hq/Hq)2: .

. , + o
a-t . . 3 : . - H 2 f50.\2
INASTER AN
i=2 Pq \ Pq fARRFAHp LT eq N ag JABRHAH %/
' ‘ 5 A )
(Bl 3 e 62
Pq Py ShtMHjala g B oA {55 T\ Aq Pq




Because SHq/ Hg is identically equal to ﬁTq/ Ty equation (A-17) may be re-

written as

T 2
5Tg : H, o\ [6H\? . Hy o Py [P P H . }2 bp, +
—— - —t—  — _— — — - 112 —_—— e —— ————— ——
Tq Hq Pq H, a Pq Py Py Ah + AH 1.2




